
Recursion

● Return Type − A function may return a value. The return_type is the data type of the value the function returns. Some
functions perform the desired operations without returning a value. In this case, the return_type is the keyword void.

● Function Name − This is the actual name of the function. The function name and the parameter list together
constitute the function signature.

● Parameters − A parameter is like a placeholder. When a function is invoked, you pass a value to the parameter. This
value is referred to as actual parameter or argument. The parameter list refers to the type, order, and number of the
parameters of a function. Parameters are optional; that is, a function may contain no parameters.

● Function Body − The function body contains a collection of statements that define what the function does.

return_type function_name(parameter list) {

 body of the function

}

Function

Intro to Recursion

Recursion is expressing an entity in terms of itself. Similarly, a recursive function is the
function that calls itself. While using recursion mentioning the exit condition or base
condition is the key to avoid infinite loop continuation.

1. The program execution starts from main() function. It calls print() function with
n=5.

2. Inside the print() function the first statement prints value of n (i.e. 5 for first
function call).

3. After printing the value of n, a condition is checked if(n <= 1), then terminate
from the function without executing below tasks.

4. If the condition (n <= 1) is false, then a recursive call to print() function is
made with decreased value of n (i.e. 4 if n=5).

5. print() function is executed again with n=4 and step 2 to 4 is repeated till n=1.

 More examples of recursion

● Factorial Finding
● Fibonacci series counting
● Sum of the array elements
● GCD Finding

Factorial
5 ! = 5 * 4 * 3 * 2 * 1

4! = 4 * 3 * 2 * 1

.

.

N ! = N * (N-1) * (N-2) * (N-3) *........*1

Fibonacci Series
F(i) = F(i-1) + F(i-2)

0, 1, 1 , 2 , 3, 5, 8, 13, 21…...

Introduction to Queue

Queue is an important data structure that follows “first in first out” fashion. That is the item that goes in first
is the item that comes out first too.

Queue Specifications

A queue is an object or more specifically an abstract data structure(ADT) that allows the following operations:

● Enqueue: Add an element to the end of the queue

● Dequeue: Remove an element from the front of the queue

● IsEmpty: Check if the queue is empty

● IsFull: Check if the queue is full

● Peek: Get the value of the front of the queue without removing it

How Queue Works

Queue operations work as follows:

1. Two pointers called FRONT and REAR are used to keep track of the first and last elements in the queue.

2. When initializing the queue, we set the value of FRONT and REAR to -1.

3. On enqueuing an element, we increase the value of REAR index and place the new element in the

position pointed to by REAR.

4. On dequeuing an element, we return the value pointed to by FRONT and increase the FRONT index.

5. Before enqueuing, we check if the queue is already full.

6. Before dequeuing, we check if the queue is already empty.

7. When enqueuing the first element, we set the value of FRONT to 0.

8. When dequeuing the last element, we reset the values of FRONT and REAR to -1.

Intro to Stack

Stack is a data structure that follows “first in last out” fashion.

A stack is an object or more specifically an abstract data structure(ADT) that allows the following operations:

● Push: Add an element to the top of a stack

● Pop: Remove an element from the top of a stack

● IsEmpty: Check if the stack is empty

● IsFull: Check if the stack is full

● Peek: Get the value of the top element without removing it

How a Stack Works

The operations work as follows:

1. A pointer called TOP is used to keep track of the top element in the stack.

2. When initializing the stack, we set its value to -1 so that we can check if the stack is empty by

comparing TOP == -1.

3. On pushing an element, we increase the value of TOP and place the new element in the position pointed

to by TOP.

4. On popping an element, we return the element pointed to by TOP and reduce its value.

5. Before pushing, we check if the stack is already full

6. Before popping, we check if the stack is already empty

